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Fig. 3. Probability of error versus the ratio A2/N,

3. Effect of the High-Pass Filter

In order to visually ascertain the effect of the high-pass
filter on the digital dump detector, the probability of
error was computed for three values of R,C, and two
values of A?/N, as a function of the ratio R,C,/R,C,. The
results are plotted in Fig. 2. Figure 3 illustrates the proba-
bility of error as a function of A2/N, for the parameters
R,C, =0.39 s and R;C, = 196s.

B. Digital Data-Transition Tracking Loops,
W. C. Lindsey and R. C. Tausworthe

1. Introduction

Recently, considerable interest has developed in the
problem of tracking data transitions in digital communi-
cation systems. The application of this technique is to
provide the receiver with an accurate estimate of symbol
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synchronization, i.e., the instants in time when the mod-
ulation may change states. In so-called single-channel
(Ref. 1) digital communication systems where symbol and
subcarrier synchronization are derived from the recovered
modulation, such a method offers a saving in transmitter
power over the so-called two-channel (Ref. 2) system
where a separate timing signal is transmitted for syn-
chronization purposes. An example of the two-channel
system is Mariner IV telecommunication system, while an
example of a single-channel system is the Mariner Mars
1969 telecommunication system in both the high and low
data-rate modes. This article presents an analysis of a
particular type of symbol-tracking device. In subsequent
analyses, we intend to investigate other types of devices
for comparison. The results are useful in designing syn-
chronizing circuitry for a wide variety of digital systems,
e.g., block decoders and sequential decoders.

2. System Model

A block diagram of a digital data-transition tracking
loop is depicted in Fig. 4. The tracking loop consists of
two branches: an “in-phase” branch, the upper half, and
a “mid-phase” branch, the lower half. These two branch
outputs, viz., I (t,) and M (t,), are fed into a phase detec-
tor, the loop multiplier, producing the signal e (¢,) which
is filtered by the loop filter F (s). The output, say v (£), of
F (s) is used to control the instantaneous frequency and
phase of the voltage-controlled oscillator (VCO). The
VCO output is used to control a time generator which
produces the time ticks ¢, for sampling the output of the
in-phase and mid-phase filters. The decision device ac-
cepts the output from the in-phase filter and announces
“+17 if the input is greater than zero and “—1” if the
input is less than zero. This information is fed into the
transition detector whose outputs are either “+1,” “—1,7
or “0.” Since the transition “value” depends on the input
up until time ¢,, whereas the mid-symbol integral depends
only on times up to t, — T/2, it is necessary to delay the
mid-symbol integral by T/2 seconds to give a number
M (t,) to the loop. This effectively inserts the function
exp (—T,/2) into the open-loop transfer function; but, as
we shall assume w,T < < 1, its effect on loop operation is
negligible and is hence omitted in the analysis to follow.
The transition value “+1” is assumed if the data sequence
goes from plus to minus, ie., a negative-going transition
occurs. If no transition in the data takes place, the output
1(t,) is set to zero. The mid-phase (MP) filter is, in effect,
the error channel of the loop, and the algebraic sign of its
output is switched in accordance with signal I (£,) to pro-
duce the so-called tracking loop S-curve. The input signal
x(t), which in practice is the output of a subcarrier track-
ing loop, is assumed to be the sum of a signal s (¢) plus

JPL SPACE PROGRAMS SUMMARY 37-50, VOL. il



> IP FILTER >

A

x(7)

> MP FILTER

additive white Gaussian noise n (). In what follows we
shall develop an analysis which enables one to design

DECISION | TRANSITION /(1)
DEVICE DETECTOR
]
TIME » Fis) e()
GENERATOR | (s
r
M{t
> DELAY 7;/2 ")
Fig. 4. Data-transition tracking loop
watts/cycle. Thus
x(@t) =2 bu{t—nT — € +n(1) )]

such a loop, determine the range in data rate and signal-
to-noise ratio in the loop bandwidth, etc., for which the
- loop will provide the necessary timing accuracy required
for symbol synchronization.

In practice, a wide range of operating signal and noise
levels can be tolerated since the tracking loop can be
implemented in the hybrid digital/analog domain using
high-speed analog/digital and digital/analog interfaces.
This conceivably can allow for implementation of loop
bandwidths on the order of a few tenths to a few thou-
sandths of a cycle. Moreover, the loop filter, being digital,
may be implemented as a perfect integrator (ie., a loop
which includes one first- and one second-order compo-
nent, Ref. 3) so that operational problems due to false
lock, static phase-error, ete., are minimized. In what fol-
lows, we quantitatively describe the loop and determine
its behavior as a function of three parameters, viz., the
energy per symbol E,, noise spectral density N,, and the
ratio & of the symbol rate R, = 1/T, to the loop band-
width w;, as a measure of performance. The mean-square
jitter about the loop’s lock point is evaluated.

3. System Analysis and Design Trends

It is assumed that the input signal x (£) consists of a
sequence of pulses of time duration T and random ampli-
tude -=A, where the probability of +A equals the proba-
bility of —A, and that the additive noise n(f) is white
and Gaussian with a single-sided spectral density of N,

JPL SPACE PROGRAMS SUMMARY 37-50, VOL. i

where

u(t) =1,if0=¢+=7T
= 0, elsewhere

and € is the random epoch to be estimated. In Eq. (1),
b,=+Aand p(+A)= p(—A)=1%

The procedure which we use to analyze loop behavior
is to develop an equivalent model of the loop from which
the nonlinear theory of tracking loops, viz., the Fokker—
Planck apparatus, may be used to specify loop perform-
ance. This involves two computations: (1) determination
of loop S-curve on the average as a function of the nor-
malized offset A = /T from the lock point » = € — €, and
(2) determination of the spectral density about the origin
of the equivalent noise as a function .of the normalized
offset A. We shall refer to this spectral density as S (v, A)
and the S-curve as g (1). We assume that the noise which
disturbs the loop is white and Gaussian with a double-
sided spectral density of S (0, ) watts/cycle. For all prac-
tical purposes, then, the equivalent transition tracking
loop of Fig. 4 may be replaced by the mathematically
equivalent loop illustrated in Fig. 5. In Fig. 5, the spectral
density of na (¢,) is denoted by S (0, A), and K is the prod-
uct of the VCO gain constant and the gain of the loop’s
phase detector. Obviously, S(0,)) is monotonically in-
creasing in A, since the further away from the lock point
(r» = 0) the more noise one has to contend with in I (t,).
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Fig. 5. Equivalent data-transition tracking loop model

This is due to the fact that more errors are made in the
“in-phase” branch which, in effect, injects more noise into
the multiplier of Fig. 4.

If little data degradation can be tolerated, then extreme
aceuracy is required in establishing symbol synchroniza-
tion. Thus, the value of S(0,1) is essentially the noise
spectral density seen by the loop at A = 0, viz., S(0,0).
If one assumes that the in-phase filter and the mid-
phase filter are perfect integrators with integration time
T seconds, then it may be shown that the S-curve is
expressed by

DO |

g(x) = ATA[1 — 2P,, (V)] M=

(2)

where Pg, (1) is the probability of detecting a transition
incorrectly, viz.,

Py, () = Erfe {[2R, (1 — 2|A[)]%} 3)

and R, = A*T/N,. By Erfc(x) is meant the function

Erfc(x) = (—271)—% / ) exp (—z2/2) dz 4)

Figure 6 illustrates the S-curve g () for various values of
R,. It is seen that, for large R,, the curves are linear while
for smaller R; the curves are highly dependent upon R,.
Also, it may be shown that

$(0,0) = NoT (1 + R, 1

1
y 2 E{;Ezexp("ﬂs)
FRO-PO1) ) =NThe G

in which h represents the bracketed quantity. Obviously,
as R, approaches infinity

S(0,0) = N,T /4 (6)
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Fig. 6. The function g (A)/AT versus X for various R,

as it should, i.e., h approaches unity.

The stochastic differential equation which relates the
pertinent parameters to the loop model in Fig. 5 may be
written as (assuming zero static timing error)

A = KF (p) [ATg (\) + n(#)] )

where A = /T = (e — €)/T. Since solving stochastic dif-
ferential equations is meaningful only in the probabilistic
sense, we seek to determine the probability distribution
p()) by the Fokker-Planck method (Ref. 3). Without
belaboring the details of the derivation, we have that

A
p(x) = Nexp {— % x[1 — 2Pz, (x)] dx} ,
-1
1
-
where N is chosen such that
1% )
/ p(d)=1 - 9)
-1
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Table 1. Values of p (\) for various values of A and §, with R, = 0.8

and 3, = 1/Tw, = R,/w,. The parameter w,, is the loop
bandwidth. It is clear from Eq. (8) that, for small Pg, (x),
ie., large R,, p{(A) becomes Gaussian with variance, as
determined from Eq. (8), of

_ h . IlNowL,
- 2R8, 2A?

(10)

3.

In the linear region of operation, the variance of the nor-
malized timing error is proportional to the signal-to-noise
ratio in the loop bandwidth w;,.

A table of values for the distribution p(A) is illus-
trated in Table 1 for R, = 0.8, typical of Mariner Mars
1969, for various values of 8. It can be seen that p(A)
becomes uniformly distributed as §;R, = A?/Nyw, ap-
proaches zero. The variance of the normalized timing
error, given by

ﬁzzf”vmndh a1

has been obtained using numerical integration; the results
are illustrated in Fig. 7 for a wide range of design
parameters.

As an alternate mechanization of the tracking loop, it
is possible to improve loop performance by reducing the
noise variance S(0,7) at the expense of changing the
S-curve. This may be accomplished by integrating in the
mid-phase channel only over a portion of the symbol
time, say w seconds. In this case it may be skown that the
S-curve is given by

ATA[1— 2Py, ()],

€O = aw - 22, 01,

0=1r=w/2T
w/2T =)= w/T
(12)
and the corresponding values of the noise spectral density
about w = 0 is given by

Nywh'

5(0,0) =~

(13)
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8¢ A=0 A= 0.125 A = 0.250 A = 0.375 A = 0.50
10* 6.1 X 107 6.1 X 107° 6.1 X 107 6.1 X 107 6.1 X 1071
10° 5.2 X 10* 1.3 X 10* 2.5 X 1077 3.1 X 10 2.7 X 107°
10 1.6 X 10° 2.5 X 107 1.0 X 107 0 0
10t 52 X 1¢° 0 0 0 4]
10° 1.6 X 10° o 0 0 o

Thus, it would appear that the noise S (0,0) may be made
arbitrarily small by allowing w to approach zero; how-
ever, the problem of symbol slipping around the lock
point begins to degrade the loop’s tracking -capability.
Figure 8 places into evidence the deleterious effects on
the S-curve when w = T/2 for various values of R, and A.
Obviously, the smaller the w the larger is the probability

101

106 1 11 1t t 1
107t 2 4 6 109 2 4 6 100 2

Rs

141 | IN1
4 6102

Fig. 7. Variance o3 of the normalized jitter versus
R; for various values of §;
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Fig. 8. The function g (A)/AT versus A for
various R, withw = 7/2

of slip for a given signal-to-noise ratio. It would appear,
then, that there exists a “best” w for a given mean time
to first symbol slip. This particular problem is best treated
by evaluating the mean time to first slip as a function of
w, R; and 8,. We shall not elaborate upon this here; how-
ever, in a later article we shall address this problem.

In the linear region of loop operation, the variance of
the normalized loop jitter is thus given by
wh'

’é‘ﬁ—s‘ *wy, (14)

i (w) =

Comparing this with the situation w = T (i.e., integration
over the full symbol time in the error channel) we have

=, (15)

in the linear region. For the cases of practical interest,
B >~ h, so the improvement in normalized jitter is
approximately

I

~| 8

(16,

Q
20

If w=T/2, then there is an approximate 3-dB improve-
ment, i.e.,

a3 (T/2) 1
e =3 (17

a3
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As before, we may write the probability density p (1)
using Fokker—Planck methods. For the case where the
mid-symbol channel integrates over a portion of the sym-
bol time, we find that

SsBs A 1
(18)
where N is again chosen such that
//27)(/\) dx=1 (19)

At large values of R., p () again becomes Gaussian; at
small R, p (1) approaches the uniform distribution. Future
work will be devoted to the problem of finding that value
of w, say w,, for which the variance of the distribution
given in Eq. (19) is a minimum.
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C. Nonlinear Analysis of Phase-Locked Loops in
Cascade, W. C. Lindsey and C. L. Weber

1. Introduction

In a wide variety of applications, the phase-lock prin-
ciple is applied to loops in cascade. For example, in deep
space communication systems, exiremely accurate two-
way Doppler and phase measurements are needed to pro-
vide information concerning the relative position and
velocity of the spacecraft; ie., tracking data is needed
for orbit determination. Certainly the linear, quasi-linear,
linear spectral and Volterra theory discussed previously?
applies directly; however, these methods of analysis yield
only approximate results and do not attempt to get the
joint probability distribution of the phase errors, whereby
various moments and significant parameters are deter-
mined.
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